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Resonance attractors of spiral waves in excitable media under global feedback

Vladimir S. Zykov and Harald Engel
Institut für Theoretische Physik, Technische Universita¨t Berlin, Hardenbergstrasse 36, D-10623 Berlin, Germany

~Received 13 February 2002; published 12 July 2002!

The dynamics of spiral waves on a circular domain is studied by numerical integration of an excitable
reaction-diffusion system with a global feedback. A theory based on the Fourier expansion of the feedback
signal is developed to explain the existence and the stability of resonance attractors of spiral waves on domains
of different sizes. The theoretical analysis predicts the existence of a discrete set of stable attractors with radii
depending on the time delay in the feedback loop. These predictions are in good quantitative agreement with
performed numerical simulations.
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I. INTRODUCTION

Spiral waves subjected to parametric forcing exhibit ve
rich spatiotemporal dynamics. Apart from a pure theoreti
interest, the controlled motion of spiral waves induced b
parametric modulation of the excitability is important f
many applications, e.g., for the defibrillation of cardiac tiss
@1–3#. The resonance attractor gives an example of such
usual spiral wave dynamics that is intensively studied n
@4–9#.

The existence of the resonance attractor is closely c
nected to the resonance drift of spiral waves induced b
parametric forcing of an excitable medium at a frequen
exactly equal to the eigenfrequency of the spiral wa
@10–12#. Such a drift provides an efficient way to control th
location of a spiral wave within a restricted domain of
excitable medium and allows one even to push it toward
boundary of the medium, when it is necessary to stop s
sustained activity@2,8,10#.

The resonance attractor has been discovered in excit
systems under a feedback control, when a pulsatory mod
tion of the excitability was synchronized with the passage
the wave fronts through a measuring point that can be a
trarily chosen in the medium@4#. This feedback forcing in-
duces a drift of the spiral core along a circular pathway c
tered at the measuring point. The theory of the resona
attractor under pulsatory modulation reduces the dynamic
a spiral wave under one-channel feedback to a low dim
sional iterative map@6,9#. It predicts the existence of circula
orbits and quantitatively describes their sizes. Recent exp
mental studies@8,9# reveal a complex structure of the attra
tor in that circular orbits of different radii coexist, dependin
on the sign and the time delay in the feedback loop.

Another possibility to synchronize parametric forcin
with the intrinsic dynamics is to apply a global feedbac
Such a feedback has been effectively used in order to ind
clustering and wave instabilities in oscillatory active med
@13#, to suppress chaotic oscillation@14# or to stabilize
and/or destabilize a spiral wave in an excitable medium@15#.

In the first part of this work we describe our numeric
results illustrating the existence of the resonance attracto
spiral waves in a circular domain of an excitable mediu
under a global feedback. Then a theory is developed to
scribe the dynamics of spiral waves under such a con
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The existence and the stability of the attractor orbits are a
lyzed. Finally, the obtained theoretical predictions are co
pared with numerical data.

II. MATHEMATICAL MODEL

In our computations, a general two-component ma
ematical model is used to describe excitable media in te
of ‘‘reaction-diffusion’’ equations

]u

]t
5Du¹2u1F~u,v !2I ~ t !,

~1!
]v
]t

5Dv¹2v1eG~u,v !,

where variablesu(x,y,t) andv(x,y,t) ~sometimes called ac
tivator and inhibitor! can be interpreted as the concentratio
of the reagents involved in a hypothetical chemical react
taking place in a thin~quasi-two-dimensional! layer. Func-
tion I (t) specifies the parametric forcing@e.g., illumination
of the light-sensitive Belousov-Zhabotinsky~BZ! solution#
applied uniformly to the whole domain.

For the functionsF(u,v) andG(u,v), we took the form
earlier used in Ref.@15#,

F~u,v !5 f ~u!2v,

f ~u!52k1u, u<s,

5kf~u2a!, s,u,102s,
~2!

5k2~102u!, 102s<u,

G~u,v !5kgu2v, kgu2v>0,

5ke~kgu2v !, kgu2v,0

with the following parameter values:kf51.7,kg52,ke
56.0,a50.1,s50.01,e50.3,Du51,Dv50. The param-
etersk1 and k2 are chosen in such a way that the functi
f (u) is continuous atu5s andu5102s.

The system~1! was integrated for a circular domain o
radiusRd with the time stepDt50.02 and the space steph
50.4. Dirichlet boundary conditions have been chos
©2002 The American Physical Society06-1
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uuRd
5vuRd

50 in contrast to no-flux conditions used in Re
@15#. Dirichlet conditions better approximate the experime
tal situation, for instance, when a circular-shaped piece
gel layer with immobilized catalyst is placed in the BZ s
lution.

For an autonomous system withI (t)50 this model has a
steady stateu5v50 that is stable with respect to a sma
perturbation. However, a superthreshold perturbation, o
locally applied, gives rise to a wave propagating through
medium. Moreover, by a special choice of initial conditions
rigidly rotating spiral wave can be created as shown in F
1. The measured period of this rotation isT551.3 and the
spiral pitch isl564.0. The spiral wave tip describes a c
cular pathway of radiusRq55.8750.092l.

To introduce a global coupling the feedback signalI (t) is
computed as

I ~ t !5kf b@B~ t2t!2B0#, ~3!

where

B~ t !5
1

SES
v~x,y,t !dxdy. ~4!

Thus, the intensity of the feedback signal is proportiona
the integral valueB of the second variable over the simulat
domainS. Two important control parameters in the feedba
loop are the gainkf b and the time delayt. Note that in the
case of a rigid rotation of a spiral wave exactly around
domain center, integralB does not depend on time. The co
stantB0 in Eq. ~3! is the value of this integral. Hence, th
application of such a feedback does not change the pa
eters of the rigid rotation, since the feedback signal vanis
for this case.

FIG. 1. Spiral wave rigidly rotating in a circular domain o
radiusR59651.5l described by the system~1! with I (t)50 and
Dirichlet boundary conditions. The computed value of the integ
B is B051.0. Contour linev(x,y,t)52.0 is shown at the instantt
5t0. Direction of the induced drift under parametric forcing wi
I (t)50.02 cos@2p(t2t0)/T2f# is shown by thick~thin! arrow for
f50 (f50.6p).
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III. COMPUTATIONS UNDER GLOBAL COUPLING

It is known that in an autonomous system such as Eq.~1!
with I (t)50 the parameters of a rigidly rotating spiral wav
do not depend on the applied boundary conditions until
distance from the spiral core center to the boundary is la
enough@16#. Due to this property a spiral wave slightly dis
placed with respect to the domain center will continue
circulate with the same rotation period around a core of
same radius. In this case the computed integralB should be a
periodic function of time. If the feedback loop is closed, t
feedback signal should disturb the rigid rotation inducing
resonant drift.

Figure 2~a! shows the trajectory of the spiral wave t
computed for a circular domain of radiusRd5l with posi-
tive gainkf b50.1 in the feedback loop andt50. The initial
location of the core center was shifted in the positivey di-
rection by Dy50.15l. After two revolutions of the spiral,
the feedback loop was closed that induced a drift of the c
toward the domain center until the trajectory is complet
stabilized and started to circulate around the domain cen
The feedback signal corresponding to this dynamical proc
is shown in Fig. 3~a!. At the beginning of the process th
signal oscillates with a relatively large amplitude that va
ishes with time while the spiral core approaches the dom
center. Remaining small amplitude~about 0.01kf bB0) oscil-
lations occur with the periodT/4 and are induced by the
applied discretization scheme where diagonal directions

l

FIG. 2. Trajectories of a spiral wave tip in the model~1! sub-
jected to the global feedback with the gainkf b50.1. The initial
location of the spiral wave tip att50 is shown by the black dot. In
~a! the spiral core motion is stabilized at the center of the circu
domain of radiusRd5l (t50, 0<t<1000). In ~b! and ~c! Rd

51.5l. In ~b! and ~c! the centrally symmetric rotation is unstab
and the core motion approaches a resonance attractor with ra
depending on the time delay:~b! t50, 0<t<30 000,~c! t514,
0<t<5000. In~d! t518, 0<t<5000 and the attractor radius van
ishes.
6-2
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not identical to thex and/ory directions.
It is very important to compare this result with simila

computations performed for the domain radiusRd51.5l as
shown in Fig. 2~b!. In contrast to the previous case, the spi
core starts to drift and a radial component of this motion
directed from the domain center. In the course of time,
velocity of this radial motion becomes smaller. Finally,
vanishes and a pure azimuthal drift remains. Thus the c
center trajectory approaches a circular pathway that lo
very similar to the resonance attractor recently observe
the case of the one-channel feedback generating a puls
feedback signal@6,8#. In our computations the feedback si
nal is a smooth function of time oscillating with the rotatio
periodT of the spiral wave, as shown in Fig. 3~b!. The am-
plitude and the complex shape of these oscillations rem
constant during the motion of the core along the resona
attractor.

The radius of the observed resonance attractor can be
trolled by variation of the time delayt in the feedback loop.
For instance, in Fig. 2~c! a tip trajectory computed witht
514 is shown. In these computations the same initial con
tions as in the previous case have been used. However
core center moves finally along an orbit of smaller radius

Moreover, by increasing the time delay, the attractor
dius can be reduced to zero. An example of such an attra
is shown in Fig. 2~d!. When this attractor is approached, t
rigid rotation of the spiral wave around the domain cente
established, as in the case shown in Fig. 2~a!. Thus, by an
appropriate choice of the time delay it is possible to induc
stabilization of a spiral wave, shown in Fig. 2~d!, or its de-
stabilization, shown in Fig. 2~b!.

FIG. 3. Feedback signalI (t) computed from Eqs.~3! and~4! for
the trajectories shown in Figs. 2~a! and 2~b!, correspondingly.
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Note that the recently elaborated theory of the resona
attractor under one-channel feedback@6,9# cannot be applied
in order to explain the phenomena observed in our comp
tions, since it deals with pulsatory feedback signals and
duces the spiral dynamics to a low dimensional iterat
map. In the considered case of a global coupling, the fe
back signal is a continuous function of time and to descr
the observed spiral wave dynamics a new theoretical
proach should be developed.

IV. ARCHIMEDIAN SPIRAL APPROXIMATION

Figure 3~b! demonstrates that the motion of the spir
wave core in our computations is induced by a periodic pa
metric forcing of the system. Although the modulation fun
tion I (t) has been computed during simulation of a syst
with a feedback, exactly the same drift trajectory will b
obtained if I (t) is treated as ana priori given function of
time. Of course, the same initial and boundary conditio
should be applied in order to reproduce the drift trajector

It is clear that the computed value of the feedback sig
depends on the spiral shape and the location of the sp
wave core. Let us assume that the induced drift is so s
that the shape and the angular velocity of the rotating sp
remain always the same. Then our aim is to estimate
computed feedback signal for a given location of the sp
wave core.

An appropriate approximation for the observed feedba
signal can be based on the following assumption. First n
that the spiral wave shown in Fig. 1 is rather thin, which is
common feature of waves in low excitable media. Hence
integral B should be proportional to the arc lengthL of the
spiral wave front:B5bL/S, whereb is a positive constant
Second, the shape of the front can be approximated by
Archimedian spiral@17,18#.

Under these assumptions the estimation of the integraB
is reduced to a pure geometrical problem: It is necessar
calculate the arc length of an Archimedian spiral within
circular domain of a given radius, as illustrated in Fig.

FIG. 4. Archimedian spiral given by Eq.~5! ~solid line! shifted
with respect to the domain center of radiusRd51.5l ~dashed line!.
The segments of the spiral located within the domain~thick solid
line! give input into the integralB(t). Displacementd5l.
6-3
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Counterclockwise rotation of the spiral displaced in the po
tive x direction on a distanced will induce periodic varia-
tions of the arc length within the domain. To evaluate the
variations, it is easier to assume that the domain cente
displaced in the negativex direction on the distanced and
rotates clockwise around the core center of the motion
spiral.

Let an Archimedian spiral be specified in a polar coor
nate system (r ,Q) by an equation

Q5Q02
2p

l
r , ~5!

wherel is the spiral pitch and the spiral is oriented in su
a way thatQ050. It is easy to see that ifd,l there is only
one intersection point between the spiral and the dom
boundary. Let (r p ,Qp) and (xp ,yp) be the coordinates of th
intersection point in the polar and Cartesian coordinate s
tem, respectively. They should obey the following system
algebraic equations:

Qp52
2p

l
r p , ~6!

Rd
25~xp2Dx!21~yp2Dy!2, ~7!

xp5r p cosQp , ~8!

yp5r p sinQp . ~9!

Here, (Dx,Dy) are the coordinates of the domain center.
accordance with our assumptions, the center rotates cl
wise around the origin of the coordinate system, that giv

Dx5d cosa,

Dy5d sina, ~10!

a52p2vt,

wherev52p/T is the rotation frequency of the spiral.
After simple transformations the following equation f

r p can be derived:

r p
21d222r pd cos~Qp2a!5Rd

2 . ~11!

An analytical solution for this equation can be found in t
limit d!l/2,Rd . Indeed, for such a small shiftd Eq. ~11!
can be reduced to

r p
222r pd cos~Qd2a!5Rd

2 , ~12!

where Qd522pRd /l. A solution for this equation unde
the assumptiond!Rd can be written in the form

r p5Rd1d cos~Qd2a!. ~13!

Thus, the valuer p oscillates nearRd with the frequency
v. Substituting this solution into Eq.~6!, variations of the
angleQp can be expressed as
01620
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Qp5Qd2
2p

l
d cos~Qd2a!. ~14!

If Rd.l/2, deviations of the arc lengthL of the spiral inside
the circular domain can be considered to be proportiona
deviations ofQp ,

L5L02Rd~Qp2Qd!5L01
2pdRd

l
cos~Qd2a!.

~15!

Due to proportionality betweenL andB an expression for the
integralB can be written in the following form:

B~ t !5B01
2db

Rdl
cosS vt1p2

2p

l
RdD . ~16!

Thus, if the shape of a spiral wave is close to an Archimed
one and if its displacement from the domain center is sm
(d!l/2,Rd), Eq. ~16! shows that the feedback sign
should be a harmonic function of time with a phase depe
ing on the domain radiusRd . This result is important for
stability analysis of a centrally symmetric rotation.

V. STABILITY OF THE CENTRALLY SYMMETRIC
ROTATING SPIRAL

A periodic parametric forcing induces a resonant drift
the spiral wave core, as was shown analytically@19,20#, and
convincingly demonstrated in experiments@5,10,12# and
computations@21–23#. The direction of the drift, of course
depends on the initial orientation of a spiral and on the
rameters of the excitable medium@19#. In our computations
the direction of the induced drift for the spiral located at
50 as shown in Fig. 1 occurs in the direction of the thi
arrow, if the periodic forcing has the formI (t)5A cos(vt).
The calculated drift is specified by the anglew520.1p.

The direction of the drift depends also on the phase of
external forcing. It is obvious that under external forcin
I (t)5A cos(vt2f) the direction of the induced drift will be
turned by the anglef, as illustrated in Fig. 1 forf50.6p.

It is important to note that the front of the spiral wav
shown in Fig. 1 can be approximated by an Archimed
spiral given by Eq.~5! with Q050, since at the radial dis
tanceRd51.5l ~i.e., at the domain boundary! the polar angle
has the valueQ52p. Hence, this spiral has the same o
entation as an Archimedian spiral described by Eq.~6!, ap-
plied to derived Eq.~16!.

Let us apply these properties of the induced drift in ord
to analyze the stability of the centrally symmetric rotation
a spiral wave with respect to a small radial shift. To this a
assume that the spiral wave shown in Fig. 1 is displaced
the positivex direction. From Eqs.~3! and ~16! it follows
that due to this displacement an external parametric forc
will appear in the form

I ~ t !5kf b

2db

Rdl
cosS vt2vt1p2

2p

l
RdD . ~17!
6-4
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Substitution ofRd51.5l andt50 into Eq.~17! gives

I ~ t !5kf b

2db

Rdl
cos~vt !. ~18!

Thus, in this case the phase shiftf is equal to zero. It mean
that after a small displacement in the positivex direction the
computed feedback signal will force the spiral wave to d
in the direction of the thick arrow in Fig. 1.

It is very important to stress that the direction of the dr
induced by the global feedback does not depend on the in
orientation of a displaced spiral. A reason for this is that
phase of the external forcing determined by Eq.~17! is also
dependent on the initial orientation, in contrast to the cas
ana priori given modulation law. If the initial orientation o
the spiral is turned by an angleQ0Þ0 with respect to the
orientation shown in Fig. 1, a phase of theI (t) in Eq. ~17!
should be also changed byQ0. As a result, in accordanc
with the properties of a resonant drift mentioned before,
direction of an induced drift will remain the same as it was
Q050.

Moreover, it becomes clear that the direction of a d
induced by the global feedback after an arbitrary orien
small displacement will be turned by the anglew with re-
spect to the direction of this displacement. Hence, an ev
tion of a radial and an azimuthal component of the c
displacement (Rc ,Qc) can be expressed in the followin
form:

dRc

dt
5V cosg, ~19!

dQc

dt
5

V

Rc
sing, ~20!

where V is an absolute value of the drift velocity and th
angle g determines the drift direction. In accordance w
Eq. ~17! and our computations shown in Fig. 1, the angleg
corresponding to a small displacementd is determined by the
following expression:

g5w1vt2p1
2p

l
Rd . ~21!

In the case shown in Fig. 2~b!, where t50 and Rd
51.5l, the angleg can be written asg5w12p. Of course,
an additional turn by 2p does not change the real directio
of the induced drift shown by the thick arrow in Fig. 1. Th
initial displacement will grow since2p/2,w,p/2 and,
hence, the derivativedRc /dt determined by Eq.~19! is posi-
tive. That corresponds to the unstable regime shown in
2~b!.

However, if the time delay in the feedback loop is suf
ciently large, the induced drift can be directed toward
domain center that should reduce the initial displacement
produce a stabilization of the centrally symmetric rotation
corresponding condition for the time delay can be deriv
from Eqs.~19! and~21! taking into account that for stability
the derivativedRc /dt should be negative. Then the stabili
01620
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condition for the centrally symmetric rotation in a domain
radiusRd51.5l can be written as

0.5p12pm2w,vt,1.5p12pm2w, ~22!

wherem is an arbitrary integer. An example of such stabi
zation computed withvt50.72p is shown in Fig. 2~d!.

Equations~19! and~21! show that the stability conditions
depend on the domain radiusRd . Indeed, substitutingRd
5l andt50 into Eq.~21! we get

g5w1p. ~23!

Hence, in this case the direction of an induced drift should
turned by the anglef5p with respect to the thick arrow in
Fig. 1. Obviously, such a drift will cause a decrease of
initial displacement and a stabilization of the centrally sy
metric rotation in accordance with our calculation shown
Fig. 2~a!. This consideration allows us to generalize the s
bility condition ~22! for the case of an arbitrary value of th
domain radius that gives

0.5p12pm2w,vt2p1
2p

l
Rd,1.5p12pm2w.

~24!

The centrally symmetric rotation of a spiral wave is stab
with respect to a small radial shift if the conditions~24! are
valid for an integer numberm.

It is important to stress that the stability conditions~24!
can be applied only in the case of a positive gainkf b in the
feedback loop. Application of a negative gain should
equivalent to an additional phase shift equal top. Hence, for
a negative gain the stability conditions are

20.5p12pm2w,vt2p1
2p

l
Rd,0.5p12pm2w.

~25!

Note that under a monotonous increase of the domain
stability and instability of the centrally symmetric rotatio
alternate periodically. Indeed, if the rigid rotation of a spir
wave is stable in a domain of radiusRd5l, this regime will
be stable for all domains with radiiRd5nl, and will be
unstable forRd51.5l1nl. Heren is an integer number.

A similar periodicity takes place with respect to the tim
delay t. If the domain size is fixed and for a givents a
stabilization occurs, then it will be observed also fort5ts
1nT, while for t5ts10.5T1nT a destabilization will take
place.

VI. EXISTENCE AND STABILITY OF THE RESONANCE
ATTRACTOR

Computation of the resonance attractor as illustrated
Fig. 2~b! shows that the induced drift in this case occurs a
due to a periodic parametric forcing of the system@see Fig.
3~b!#. The core center of a spiral wave moves along t
attractor of radiusRa . A displacementd of the core with
respect to the domain center is exactly equal to the attra
radiusRa and cannot be considered as a small paramete
6-5
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order to analyze the feedback signal in this regime, the c
of an arbitrary large displacementd,Rd should be exam-
ined. In contrast to the case of a small displacement, an
lytical consideration leads to rather complicated expressio
However, the arc length of an Archimedian spiral within
circular domain can be easily determined numerically.

To perform these computations we assume again tha
Archimedian spiral is motionless, while the domain cente
displaced initially in the negativex direction and then rotate
in accordance with Eq.~10!. For numerical procedure it is
useful to present a spiral as a sequence of short segm
Then, to estimate the arc length, it is enough to compu
total length of all segments located inside the circular
main. As in the previous case it is assumed that the inte
B(t) will be proportional to the arc lengthL(t) of the spiral
inside the rotating domain:B(t)/b5L(t)/S5 l (t).

Obviously, l (t) is a periodic function of time, as well a
the feedback signal shown in Fig. 3~b! and corresponding to
the resonance attractor. Variations ofl (t)2 l 0 during one pe-
riod are shown in Fig. 5 as a function of the rotation anglea.
Obviously, this function is not necessary a simple harmo
one, as it was in the case of a small displacementd @see Eq.
~15!#. Nevertheless, it has been shown that only the fi
component in the Fourier series of a weak periodic forc
can produce a detectable resonant drift@20#. Hence, in order
to determine the drift velocity, one has to apply the Four
expansion to the feedback signal shown in Fig. 5.

In order to be consistent with the previous considerati
let us expand the computed functionl (t)2 l 0 ~here l 0
5L0 /S) in the following form:

l ~ t !2 l 05A01A cos~vt2f! ~26!

and skip all other terms likeAncos(nvt1fn) with n.1. The
coefficients in this expansion are

FIG. 5. The shape of the feedback signall 2 l 0 computed as a
function of a rotation anglea ~solid line! and its first Fourier har-
monic ~dashed line!. The domain radiusRd51.5l. Displacement
d5l.
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A05
1

2pE0

2p

@ l ~a!2 l 0#da,

A5AA1
21B1

2,

f5arctan~B1 /A1!,

where

A15
1

4pE0

2p

@ l ~a!2 l 0#cos~a!da,

B15
1

4pE0

2p

@ l ~a!2 l 0#sin~a!da.

It is clear that the coefficientsA0 ,A, andf should depend on
two parameters:Rd and d. Figure 6 shows the compute
dependencies off on d/l for four different values ofRd .
The valueA0 remains always relatively small and does n
play any important role in the induced drift. The amplitudeA
vanishes ford50 and for smalld linear dependence~16! is
valid. Interestingly,A(d) is a nonmonotonous but bounde
function of d with a global maximum inversely proportiona
to Rd . The amplitudeA determines the absolute value of th
drift velocity.

Most important for the analysis below is the comput
value of the phase shiftf5f(d). For smalld, f practically
does not depend ond, but increases withRd @cf. Eq. ~16!#.
For any givenRd , the phase shift grows withd, while the
derivative of this increasing function with respect tod oscil-
lates.

As mentioned before, the phase shift in the feedback
nal determines the direction of the induced resonant d

FIG. 6. The phasef ~solid line! and the amplitudeA ~dashed
line! of the first Fourier harmonic of the feedback signall 2 l 0 com-
puted as a function of the displacementd for domains of different
radii: ~a! Rd50.5l, ~b! Rd5l, ~c! Rd51.5l, ~d! Rd52.0l.
6-6
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Indeed, using the expansion~26! and Eq.~3!, the expression
for the first harmonic in the feedback signal in the case, w
a spiral core center is located at a distanceRc from the do-
main center, can be written as

I ~ t !5kf bbA~Rc!cos@vt2vt2f~Rc!#. ~27!

The total phase shift in the feedback signal is the sumvt
1f(Rc). In the absence of this shift the spiral wave d
placed in the positivex direction will be forced by a signa
I (t)5kf bbA(Rc)cos(vt). In accordance with our computa
tions, such a forcing will induce a drift specified by an ang
w with respect to thex axis, as shown in Fig. 1. In the case
an arbitrary displacementRc the angleg in Eqs. ~19! and
~20! can be written as

g5w1vt1f~Rc!. ~28!

The necessary condition for the existence of a resonanc
tractor is a drift in a direction orthogonal to the radial d
placement of a spiral wave. Only in the case, when the ra
component of the drift velocity is equal to zero, the spi
wave core will describe a circular trajectory around the d
main center. In accordance with Eqs.~19! and~28!, the nec-
essary condition for the existence of a resonance attracto
radiusRa is

vt1f~Ra!50.5p2w12pm. ~29!

This equation is very important, because it allows us to
press the attractor radiusRa as a function of the time delayt
using the parametric representation

Ra5d,

t

T
50.252

w

2p
2

f~d!

2p
1m. ~30!

Figure 7 shows the functionRa5Ra(t) determined for the

FIG. 7. The radiusRa of the resonance attractor as a function
the time delayt computed from Eq.~30! for a positive gain~dashed
line! and from Eq.~31! for a negative gain~solid line!. Computa-
tional data obtained after integration of the model~1! are shown as
diamonds~asterisks! for the gainkf b50.1 (kf b520.1). The do-
main radiusRd51.5l.
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domain radiusRd51.5l. To plot this function, the depen
dencef(d) shown in Fig. 6~c! was used. The dashed curv
in the lower left corner corresponds tom50. To obtain the
next two dashed curves the valuesm51 and m52 have
been used.

Note that Eq.~30! determines the attractor radius for th
case of a positive gainkf b in the feedback loop. A change o
the gain sign can be considered as an additional phase
equal top. Hence, the attractor radius for a negative gain c
be expressed in the following way:

Ra5d,

t

T
50.752

w

2p
2

f~d!

2p
1m. ~31!

In Fig. 7 three branches of this dependence correspondin
m50,1,2 are shown by solid curves.

In order to explain why a circular pathway around t
domain center plays the role of an attractor of spiral wav
one should consider the corresponding transient process
ing similar arguments about the drift direction. For instan
in computations illustrated in Fig. 2~b! the spiral wave is
initially located rather close to the domain center. The ph
shift vt1f(Rc) is small in the generated feedback sign
becauset50 andf(Rc) is negligible@see Fig. 6~c!#. Due to
this, the drift initially occurs practically at the anglew with
respect to the radial direction. An increase ofRc results in a
growth of the phase shiftf(Rc) that leads to a rotation of the
drift direction to the left. WhenRc becomes equal toRa , the
radial component of the drift velocity vanishes and the sp
core starts to describe a circular pathway, correspondin
the resonance attractor. If the distance toward the dom
center is suddenly increased due to some fluctuation, a n
tive component of the radial drift appears, since the ph
shift f(Rc) grows. This negative radial velocity begins
compensate for the initial fluctuation.

This kinematical consideration can be easily comp
mented by a linear stability analysis of Eqs.~19! and ~28!,
which should take into account thatf(d) is an increasing
function ~see Fig. 6!. Stable fixed points of this system co
respond tog50.5p12pm, which leads to Eq.~29!. Un-
stable fixed points are given byg520.5p12pm and cor-
respond to separatrices restricting basins of attraction
stable fixed points.

Thus, the existence and stability of the resonance attra
obtain a transparent explanation analyzing of the phase
in the feedback signal.

VII. COMPARISON WITH COMPUTATIONAL RESULTS

It is important to compare the results of the theoreti
analysis with computations performed with the reactio
diffusion model~1!. To this aim a number of computation
have been performed using different values of the time de
t and different signs of the gainkf b in the feedback loop.
The computed radii of the corresponding resonance attrac
are shown in Fig. 7 as separate diamonds and aster
6-7
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The computed data agree very well with the theoreti
predictions everywhere, except in the region of relativ
largeRa . A more detailed consideration of this effect show
that the reason for this discrepancy is a boundary influen
Figure 8~a! shows a characteristic example of a resona
attractor of such a large radius. The performed theoret
consideration did not take into account that a real spiral w
has a core with radiusRq50.092l. Hence, the attractor ra
dius in reality cannot be larger thanRd2Rq . Moreover, the
spiral wave cannot survive near the boundary if the c
boundary is located directly at the boundary of the domain
gap with a width about the core radius should be there.
nally, due to the boundary effects the attractor radius can
be larger thanRd22Rq51.42l. This estimate correspond
very nicely to the upper boundary of the computed attrac
radius.

Note that the drift of a spiral wave in a vicinity of th
domain boundary becomes extremely sensitive to any dis
bances. Only very accurate computations exhibit a lo
lasting drift. Any small deviations of the core position d
rected toward the domain boundary lead to the disappear
of the spiral.

In accordance with Fig. 7, it is possible to have seve
different resonance attractors for given parameters in
feedback loop. What kind of attractors will be achieved d
pends, of course, on the initial location of the spiral co
Thus, there should be a separatrix bounding the basin
attraction. It is easy to see that the separatrices for the ca
a positive gainkf b obey Eq.~31! describing attractor radii for
a negative gain, and vice versa.

A spiral wave initially located exactly on this separatr
can perform a long drift describing this unstable circu
pathway, as shown in Fig. 8~b!. However, finally the direc-
tion of the drift will be changed and it will achieve a stab
resonant attractor.

This complicated transient process can be simulated
the system of Eqs.~19!, ~20!, and ~28!. Note that initially
g'2p/2 since the spiral core is located near a separatrix
accordance with Eq.~20!, du/dt,0 and the drift occurs in
the clockwise direction. That is a common property of u

FIG. 8. Trajectory of the spiral wave tip corresponding to t
resonance attractor computed for the model~1! with the domain
radius Rd51.5l, the gainkf b520.1, and the time delayt536.
The initial location of the spiral wave tip is shown by the black d
~a! A long trip the spiral wave corresponds to the resonance att
tor under a strong influence of the domain boundary (0<t
<15 000). ~b! After a long trip along an unstable trajectory th
spiral core approaches a stable circular orbit (0<t<15 000).
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stable orbits: the drift direction is opposite to the rotati
direction of a spiral. Decrease ofRc during the drift induces
further decrease ofg first until g52p ~the azimuthal drift
vanishes at this instant! and then untilg521.5p which cor-
responds to a stable orbit. For all attractors the induced
tation of the spiral core coincides with the rotation directi
of a spiral wave.

The performed computations allow us also to verify t
theoretical predictions about the stability of the centra
symmetric rotation of spiral waves. To this aim, taking in
account that in the modelf520.1, Eq.~22! can be written
as

0.31m,t/T,0.81m. ~32!

These inequalities determine intervals of thet/T axis in Fig.
7 locating between dashed~left boundary! and solid~right
boundary! curves. Our computations indeed demonstrate
existence of the centrally symmetric rotation~i.e., the reso-
nance attractor withRa50) in the predicted regions, excep
for small deviations of the boundaries specified by inequ
ties ~32!.

The drift velocity is another important characteristic
the resonance attractor. One can assume that for slow dri
velocity is proportional to the amplitude of the feedback s
nal. In all our computations the absolute value of the gainkf b
in the feedback loop was the same:ukf bu50.1. However, the
amplitudeA of the generated feedback signal depends on
displacementd from the domain center, as shown in Fi
6~c!. The small value of the amplitudeA at d50.6l explains
the extremely slow drift velocity for the attractor shown
Fig. 2~b!. In contrast to this, the drift velocity for the attrac
tor shown in Fig. 2~c! is relatively fast, because the functio
A(d) achieves a maximum neard50.3l.

The predicted drift velocity does not depend on the g
sign and on the time delayt. It depends on the absolut
value of the gainkf b and on the attractor radiusRa . In ac-
cordance with this, the drift velocity is also very small fo
Ra'0.6l in the computations shown in Fig. 8~b!.

The domain radius is another important factor that infl
ences the drift velocity. As mentioned before, the amplitu
of the first Fourier component is inversely proportional toRd
as it can be seen in Fig. 6. To compensate for this decrea
of the drift velocity it is possible to increase the gainkf b in
the feedback loop. However, there are many restrictions,
instance, an enhancement of computational noise, which
not allow us to apply infinitely large gain. Thus, one c
expect extremely slow drift ifRd@l.

Thus, the predicted direction and the absolute value of
induced drift, the attractor radius and the regions of the c
trally symmetrical rotation are in very good agreement w
computations performed on the reaction-diffusion model.

VIII. CONCLUSION

Our computations demonstrate the existence of the re
nance attractors of spiral waves rotating in an excitable m
dium under global feedback. The theory of the resona
attractor in a circular domain developed in this work is bas

.
c-
6-8
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RESONANCE ATTRACTORS OF SPIRAL WAVES IN . . . PHYSICAL REVIEW E66, 016206 ~2002!
on the finding that the direction of the drift induced by t
global feedback can be specified as a function of the sp
core location and does not depend on the initial orienta
of the spiral wave. This theory explains the phenomena
stabilization and destabilization of the centrally symmet
rotation of spiral waves for the domains of different sizes a
predicts the existence of attractors with different radii. It
lows us to explain the attractor stability and gives quant
tive expressions of the attractor radius as a function of
domain size and of the time delay in the feedback loop.

The only quantity that should be measured in order
apply these theoretical predictions is the anglew that speci-
fies the direction of a resonant drift~see Fig. 1!. Thus, the
obtained theoretical results can be easily checked experim
tally. The light-sensitive Belousov-Zhabotinsky reaction
probably the most convenient object for such experime
verification, although spiral waves are effectively studied
context of CO oxidation on platinum surface@24# and exci-
tation waves in cardiac tissue@25#, too.

The obtained quantitative expressions are based on
assumptions that a rigidly rotating spiral wave has an Arc
median shape and the velocity of the induced drift is sm
These conditions are fulfilled for a spiral in media with a lo
excitability independent of their physical nature. Hence,
application field of the elaborated theory is very broad. F
instance, in the framework of this theory the stabilization a
destabilization of the centrally symmetric rotation in a circ
lar domain discovered in recent computations@15# obtain a
d

ns

s.

.

.
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clear explanation. Also the experimental observations of
resonance attractor under feedback derived from a confi
circular domain@26,27# can be quantitatively explained.

Spiral wave dynamics under global feedback constitute
broad and prospective field for both theoretical and exp
mental studies. Only a very symmetrical case of a circu
domain has been considered in this paper. It is clear
small deviation from this shape cannot change the m
properties of the observed drift unless they do not change
first Fourier component of the feedback signal. However,
essential variation of the domain geometry~to square or el-
lipse! can induce some additional properties of the sp
wave dynamics. Interesting challenges for future work c
be also the investigation of the influence of the global fe
back on a meandering spiral or the transition to a large g
in the feedback loop. Both of these aspects are very imp
tant for such applications as the defibrillation of cardi
muscle. From the theoretical point of view it is very intere
ing to clarify a correspondence between the resonance at
tor under global and one-channel feedback. To this aim
should bring together two quite different theoretical a
proaches.
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