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Resonance attractors of spiral waves in excitable media under global feedback
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The dynamics of spiral waves on a circular domain is studied by numerical integration of an excitable
reaction-diffusion system with a global feedback. A theory based on the Fourier expansion of the feedback
signal is developed to explain the existence and the stability of resonance attractors of spiral waves on domains
of different sizes. The theoretical analysis predicts the existence of a discrete set of stable attractors with radii
depending on the time delay in the feedback loop. These predictions are in good quantitative agreement with
performed numerical simulations.
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I. INTRODUCTION The existence and the stability of the attractor orbits are ana-
lyzed. Finally, the obtained theoretical predictions are com-
Spiral waves subjected to parametric forcing exhibit verypared with numerical data.

rich spatiotemporal dynamics. Apart from a pure theoretical
interest, the controlled motion of spiral waves induced by a Il. MATHEMATICAL MODEL
parametric modulation of the excitability is important for In our computations, a general two-component math-
many applications, e.g., for the defibrillation of cardiac tissue . . ’ ) . -
[1-3]. The resonance attractor gives an example of such une_m“aUcaI.mod'eI 'S us:ed to describe excitable media in terms
usual spiral wave dynamics that is intensively studied nov\Pf reaction-diffusion” equations

[4-9].
The existence of the resonance attractor is closely con- (;—ltJ:Duvzu+ F(u,v)—I(t),
nected to the resonance drift of spiral waves induced by a
parametric forcing of an excitable medium at a frequency Py @
exactly equal to the eigenfrequency of the spiral wave — =D, V% +€eG(u,v),
[10-12. Such a drift provides an efficient way to control the at

location of a spiral wave within a restricted domain of an

exciable medm and slows one even o ush t award 12 ISRES(E) 0 (1) comeimes s e
boundary of the medium, when it is necessary to stop self- P

sustained activity2,8,10. of the reagents involved in a hypothetical chemical reaction

The resonance attractor has been discovered in excitabfelklng place in a thinquasi-two-dimensionallayer. Func-

systems under a feedback control, when a pulsatory modul 1on I(t). spemﬁe;_the parametric forcn{g.g., |IIum|ngtlon
tion of the excitability was synchronized with the passage ofof the light-sensitive Belousov-ZhabotinskBZ) solutiori
the wave fronts through a measuring point that can be arblfElpIOIIeOI unlforml_y to the whole domain.

trarily chosen in the mediurf4]. This feedback forcing in- For the functions=(u,v) and G(u,v), we took the form
duces a drift of the spiral core along a circular pathway Cen_earller used in Ref15],

tered at the measuring point. The theory of the resonance F(u,v)=f(u)—v,
attractor under pulsatory modulation reduces the dynamics of
a spiral wave under one-channel feedback to a low dimen- f(u)=—ku, usoc,
sional iterative map6,9]. It predicts the existence of circular
orbits and quantitatively describes their sizes. Recent experi- =ki(u—a), o<u<10-o,
mental studie$8,9] reveal a complex structure of the attrac- )
tor in that circular orbits of different radii coexist, depending =k,(10—u), 10-o=u,
on the sign and the time delay in the feedback loop.

Another possibility to synchronize parametric forcing G(u,v)=kgu—v, Kkqu—v=0,
with the intrinsic dynamics is to apply a global feedback.
Such a feedback has been effectively used in order to induce =k(kgu—v), Kkgu—v<0

clustering and wave instabilities in oscillatory active media
[13], to suppress chaotic oscillatiofi4] or to stabilize with the following parameter valuesk;=1.7,kq=2k,
and/or destabilize a spiral wave in an excitable medit§j. =6.0,a=0.1,0=0.01,e=0.3,D,=1,D,=0. The param-

In the first part of this work we describe our numerical etersk; andk, are chosen in such a way that the function
results illustrating the existence of the resonance attractor df(u) is continuous ati=o¢ andu=10—o.
spiral waves in a circular domain of an excitable medium The system(1) was integrated for a circular domain of
under a global feedback. Then a theory is developed to deadiusRy with the time stepAt=0.02 and the space stép
scribe the dynamics of spiral waves under such a control=0.4. Dirichlet boundary conditions have been chosen:
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FIG. 1. Spiral wave rigidly rotating in a circular domain of
radiusR=96= 1.5\ described by the systed) with I1(t)=0 and
Dirichlet boundary conditions. The computed value of the integral
B is Bo=1.0. Contour linev(x,y,t)=2.0 is shown at the instart
=t,. Direction of the induced drift under parametric forcing with
I(t)=0.02 cof2m(t—tp)/ T—¢] is shown by thick(thin) arrow for
¢=0 (¢=0.6m). FIG. 2. Trajectories of a spiral wave tip in the mod&) sub-

jected to the global feedback with the gain,=0.1. The initial
ulr,=vlr,=0 in contrast to no-flux conditions used in Ref. location of the spiral wave tip at=0 is shown by the black dot. In

[15]. Dirichlet conditions better approximate the experimen-(a) the spiral core motion is stabilized at the center of the circular
tal situation, for instance, when a circular-shaped piece of §omain of radiusRg=x (7=0,0<t<1000). In (b) and (c) Ry

gel layer with immobilized catalyst is placed in the BZ so- =1.5\. In (b) and(c) the centrally symmetric rotation is unstable
lution and the core motion approaches a resonance attractor with radius

. . depending on the time delayb) =0, 0<t=<30000,(c) =14,
For an autonomous System wikft) .:O this model has a OsptsSO(?O. In(d) 7=18, Ostyi)SOOO and the attracto(r Eadius van-
steady statei=v =0 that is stable with respect to a small ; hes.
perturbation. However, a superthreshold perturbation, once
locally applied, gives rise to a wave propagating through the [lIl. COMPUTATIONS UNDER GLOBAL COUPLING
medium. Moreover, by a special choice of initial conditions a

rigidly rotating spiral wave can be created as shown in Fig. . Itis known that in an autonomous system such_as(lE)q.
1. The measured period of this rotationTis=51.3 and the with 1 (t) =0 the parameters of a rigidly rotating spiral wave

spiral pitch is\ =64.0. The spiral wave tip describes a cir- dp not depend on thg applied boundary conditions u.ntil the
. _ distance from the spiral core center to the boundary is large
cular pathway of radiug,=5.87=0.09. M 16 Due to thi ; ical liahtly dis-
To introduce a global coupling the feedback sigi@&) is enough .]' ue 1o this property a spiral wave slightly dis
computed as p_Iaced Wlth respect to the c_Jomaln_ center will continue to
circulate with the same rotation period around a core of the
same radius. In this case the computed inteBrsthould be a
I(t) =ksp[ B(t—7) = Bol, (3 periodic function of time. If the feedback loop is closed, the
feedback signal should disturb the rigid rotation inducing the
where resonant drift.
Figure 2a) shows the trajectory of the spiral wave tip
1 computed for a circular domain of radil& =\ with posi-
B(t)= gj v(x,y,t)dxdy. (4)  tive gainks,=0.1 in the feedback loop ang=0. The initial
S location of the core center was shifted in the posityei-
rection by Ay=0.15\. After two revolutions of the spiral,
Thus, the intensity of the feedback signal is proportional tothe feedback loop was closed that induced a drift of the core
the integral valué3 of the second variable over the simulated toward the domain center until the trajectory is completely
domainS Two important control parameters in the feedbackstabilized and started to circulate around the domain center.
loop are the gairk;, and the time delay. Note that in the The feedback signal corresponding to this dynamical process
case of a rigid rotation of a spiral wave exactly around theis shown in Fig. 8a). At the beginning of the process the
domain center, integrdd does not depend on time. The con- signal oscillates with a relatively large amplitude that van-
stantBg in Eq. (3) is the value of this integral. Hence, the ishes with time while the spiral core approaches the domain
application of such a feedback does not change the parangenter. Remaining small amplitudebout 0.0k;,B,) oscil-
eters of the rigid rotation, since the feedback signal vanishelations occur with the period/4 and are induced by the
for this case. applied discretization scheme where diagonal directions are
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— [ J with respect to the domain center of radRg= 1.5\ (dashed ling
0.00 The segments of the spiral located within the dom@lmick solid
F line) give input into the integraB(t). Displacement=\.
-0.02 b
i Note that the recently elaborated theory of the resonance
-0.04L : : : attractor under one-channel feedb&6l9] cannot be applied
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in order to explain the phenomena observed in our computa-
tions, since it deals with pulsatory feedback signals and re-
FIG. 3. Feedback sign&(t) computed from Eqs3) and(4) for ~ duces the spiral dynamics to a low dimensional iterative

the trajectories shown in Figs(&@2 and 2b), correspondingly. map. In the considered case of a global coupling, the feed-
back signal is a continuous function of time and to describe

the observed spiral wave dynamics a new theoretical ap-
proach should be developed.

t

not identical to thex and/ory directions.

It is very important to compare this result with similar
computations performed for the domain radRg= 1.5\ as
shown in Fig. 2b). In contrast to the previous case, the spiral IV. ARCHIMEDIAN SPIRAL APPROXIMATION
core starts to drift and a radial component of this motion is

directed from the domain center. In the course of time, the Figure ’q.ib) demonstrate_:s th_at_the motion of t_he_splral
velocity of this radial motion becomes smaller. Finally, it "o ¢ cOr€ In our computations is induced by a periodic para-
CIty . Y U metric forcing of the system. Although the modulation func-

. . fion [(t) has been computed during simulation of a system
center trajectory approaches a circular pathway that Iookﬁlith a feedback, exactly the same drift trajectory will be

very similar to the resonance attractor recently observed Whtained ifI(t) is treated as am priori given function of
the case of the one-channel feedback generating a pulsatofyhe of course, the same initial and boundary conditions
feedback signdl6,8]. In our computations the feedback sig- ghoyid be applied in order to reproduce the drift trajectory.
nal is a smooth function of time oscillating with the rotation |t is clear that the computed value of the feedback signal
period T of the spiral wave, as shown in Fig(8. The am-  depends on the spiral shape and the location of the spiral
plitude and the complex shape of these oscillations remaiyave core. Let us assume that the induced drift is so slow
constant during the motion of the core along the resonancgat the shape and the angular velocity of the rotating spiral
attractor. remain always the same. Then our aim is to estimate the
The radius of the observed resonance attractor can be consemputed feedback signal for a given location of the spiral
trolled by variation of the time delay in the feedback loop. wave core.
For instance, in Fig. @) a tip trajectory computed withr An appropriate approximation for the observed feedback
=14 is shown. In these computations the same initial condisignal can be based on the following assumption. First note
tions as in the previous case have been used. However, tlieat the spiral wave shown in Fig. 1 is rather thin, which is a
core center moves finally along an orbit of smaller radius. common feature of waves in low excitable media. Hence the
Moreover, by increasing the time delay, the attractor raintegral B should be proportional to the arc lendthof the
dius can be reduced to zero. An example of such an attract@piral wave frontB=bL/S, whereb is a positive constant.
is shown in Fig. 2d). When this attractor is approached, the Second, the shape of the front can be approximated by an
rigid rotation of the spiral wave around the domain center isArchimedian spira[17,1§.
established, as in the case shown in Fig).2Thus, by an Under these assumptions the estimation of the integral
appropriate choice of the time delay it is possible to induce as reduced to a pure geometrical problem: It is necessary to
stabilization of a spiral wave, shown in Fig(d?, or its de- calculate the arc length of an Archimedian spiral within a
stabilization, shown in Fig. (B). circular domain of a given radius, as illustrated in Fig. 4.
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Counterclockwise rotation of the spiral displaced in the posi- 21
tive x direction on a distance will induce periodic varia- 0p=04——dcogBy—a). (14
tions of the arc length within the domain. To evaluate these
variations, it is easier to assume that the domain center i
displaced in the negative direction on the distancd and
rotates clockwise around the core center of the motionle
spiral.

Let an Archimedian spiral be specified in a polar coordi-
nate systemr(,®) by an equation L=Lo~Ry(0,—0O4)=Lo+ cog 04— a).

2m (15)
-, 5)

i Rq>\/2, deviations of the arc lengthof the spiral inside
the circular domain can be considered to be proportional to
Sdeviations of®,,

2mdRy

@ = @0_
Due to proportionality betweeln andB an expression for the

where\ is the spiral pitch and the spiral is oriented in suchiNtégralB can be written in the following form:

a way that®,=0. It is easy to see that d<\ there is only >db 5

one intersection point between the spiral ar_1d the domain B(t)=Bo+ — cos( ot + 7— —Ter)- (16)
boundary. Let(,,0,) and ,,y,) be the coordinates of the Ra\ A

intersection point in the polar and Cartesian coordinate sys-

tem, respectively. They should obey the following system ofThus, if the shape of a spiral wave is close to an Archimedian

algebraic equations: one and if its displacement from the domain center is small
(d<AN/2<Ry), Eq. (16) shows that the feedback signal
_ 2m should be a harmonic function of time with a phase depend-
Op=- Trp’ ©) ing on the domain radiu®,. This result is important for
stability analysis of a centrally symmetric rotation.
RG=(%p— AX)%+(yp—Ay)?, (7)
V. STABILITY OF THE CENTRALLY SYMMETRIC
Xp=T,C0SO, t3) ROTATING SPIRAL
y.=r_sin® 9) A periodic parametric forcing induces a resonant drift of
p p p-

the spiral wave core, as was shown analyticfll9,20, and
Here, (Ax,Ay) are the coordinates of the domain center. Inconvincingly demonstrated in experimenfs,10,13 and
accordance with our assumptions, the center rotates clockomputationg21-23. The direction of the drift, of course,

wise around the origin of the coordinate system, that givesdepends on the initial orientation of a spiral and on the pa-
rameters of the excitable mediur9]. In our computations

Ax=d cosa, the direction of the induced drift for the spiral locatedtat
=0 as shown in Fig. 1 occurs in the direction of the thick
Ay=dsina, (10 arrow, if the periodic forcing has the forir{t) = A cos(t).
The calculated drift is specified by the angle= —0.17.
a=—7—wt, The direction of the drift depends also on the phase of an
external forcing. It is obvious that under external forcing
wherew=27/T is the rotation frequency of the spiral. I (t) =A coswt—¢) the direction of the induced drift will be
After simple transformations the following equation for turned by the angle, as illustrated in Fig. 1 foep=0.67.
r, can be derived: It is important to note that the front of the spiral wave
2 o ) shown in Fig. 1 can be approximated by an Archimedian
rptd—2rpdcod®,—a)=Ry. (1) spiral given by Eq(5) with ©®,=0, since at the radial dis-

. . ) . . tanceRy= 1.5\ (i.e., at the domain boundarthe polar angle
An analytical solution for this equation can be found in thep ¢ the valug® = — . Hence. this spiral has the same ori-
limit d<\/2<Ry. Indeed, for such a small shi@ Eq. (11 gntation as an Archimedian spiral described by @, ap-
can be reduced to plied to derived Eq(16).
2 2 Let us apply these properties of the induced drift in order
rp=2rpdcogO4—a)=Ry, (12 to analyze the stability of the centrally symmetric rotation of
a spiral wave with respect to a small radial shift. To this aim
assume that the spiral wave shown in Fig. 1 is displaced in
the positivex direction. From Eqs(3) and (16) it follows
rp=Ry+dcog@y—a). (13) th.at due to _this displacement an external parametric forcing
will appear in the form

where @ 4=—2m7Ry4/\. A solution for this equation under
the assumptiom <Ry can be written in the form

Thus, the value , oscillates neaRy with the frequency
w. Substituting this solution into Eq6), variations of the
angle®, can be expressed as

2

I(t)=k 2db R 1
(t)= fbmco a)t—w7'+7T—T dl- a7
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Substitution ofRy= 1.5\ and7=0 into Eq.(17) gives condition for the centrally symmetric rotation in a domain of
radiusRy= 1.5\ can be written as

2db
I(t):kfbﬁcoiwt)' (18) 0.57+2mm— o<w7r<1.57+27m-— ¢, (22

wherem is an arbitrary integer. An example of such stabili-

Thus, in this case the phase shifiis equal to zero. It means ; ; i =
P hifis eq zation computed witho 7=0.727 is shown in Fig. 2d).

that after a small displacement in the positivdirection the , . "
computed feedback signal will force the spiral wave to drift . _Eduations(19) and(21) show that the stability conditions

in the direction of the thick arrow in Fig. 1. depend on the domain radil®;. Indeed, substitutindRy

It is very important to stress that the direction of the drift = and7=0 into Eq.(21) we get

induced by the global feedback does not depend on the initial ot 23)
orientation of a displaced spiral. A reason for this is that the yoerm
phase of the external forcing determined by Eij) is also  Hence, in this case the direction of an induced drift should be
dependent on the initial orientation, in contrast to the case ofyrned by the angle= = with respect to the thick arrow in

ana priori giVen modulation law. If the initial orientation of F|g 1. Obvious'y, such a drift will cause a decrease of the
the spiral is turned by an angl@,#0 with respect to the jnjtial displacement and a stabilization of the centrally sym-
orientation shown in Fig. 1, a phase of th¢) in Eq. (17)  metric rotation in accordance with our calculation shown in
should be also changed ,. As a result, in accordance Fig. 2(a). This consideration allows us to generalize the sta-

with the properties of a resonant drift mentioned before, theyility condition (22) for the case of an arbitrary value of the
direction of an induced drift will remain the same as it was atdomain radius that gives

OIO.
Moreover, it becomes clear that the direction of a drift 2w
induced by the global feedback after an arbitrary oriented 0-°7+27M—¢<w7— 7+ ——Ry<l.5m+2mm—¢.
small displacement will be turned by the angtewith re- (24)
spect to the direction of this displacement. Hence, an evolu-
tion of a radial and an azimuthal Component of the CoreThe Centra”y Symmetric rotation of a Spiral wave is stable

displacement R.,0®.) can be expressed in the following with respect to a small radial shift if the conditio(®4) are
form: valid for an integer numbem.

It is important to stress that the stability conditiof2s})
can be applied only in the case of a positive dajgin the

ar - v cosy, (19 feedback loop. Application of a negative gain should be
equivalent to an additional phase shift equaktoHence, for
a0, VvV a negative gain the stability conditions are
= —sinvy, (20
dt R

2
—0.57+2mm—op<wr— W+TRd< 0.57+2mm— ¢.
whereV is an absolute value of the drift velocity and the (25
angle y determines the drift direction. In accordance with
Eq. (17) and our computations shown in Fig. 1, the angle Note that under a monotonous increase of the domain size
corresponding to a small displacemelris determined by the  stapility and instability of the centrally symmetric rotation

following expression: alternate periodically. Indeed, if the rigid rotation of a spiral
5 wave is stable in a domain of radi&g=\, this regime will
y=p+wr— 7T+_7TRd. (21  be stable for all domains with radR;=n\, and will be
A unstable forRy=1.5\+n\. Heren is an integer number.

o A similar periodicity takes place with respect to the time
In the case shown in Fig.(B), where 7=0 and Ry  delay 7. If the domain size is fixed and for a given a
=1.5, the angley can be written ay= ¢+ 2. Of course,  giapilization occurs, then it will be observed also for 7

an additional turn by z does not change the real direction | 1 while for 7= 7.+ 0.5T+nT a destabilization will take
of the induced drift shown by the thick arrow in Fig. 1. The place.

initial displacement will grow since- 7/2<¢<m/2 and,

hence, the derivativdR;./dt determined by Eq(19) is posi- VI. EXISTENCE AND STABILITY OF THE RESONANCE
tive. That corresponds to the unstable regime shown in Fig. ATTRACTOR
2(b).

However, if the time delay in the feedback loop is suffi- Computation of the resonance attractor as illustrated in
ciently large, the induced drift can be directed toward theFig. 2(b) shows that the induced drift in this case occurs also
domain center that should reduce the initial displacement andue to a periodic parametric forcing of the systeme Fig.
produce a stabilization of the centrally symmetric rotation. A3(b)]. The core center of a spiral wave moves along this
corresponding condition for the time delay can be derivedattractor of radiusR,. A displacement of the core with
from Egs.(19) and(21) taking into account that for stability respect to the domain center is exactly equal to the attractor
the derivatived R, /dt should be negative. Then the stability radiusR, and cannot be considered as a small parameter. In
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FIG. 5. The shape of the feedback sighall, computed as a a/ a/

function of a rotation anglex (solid line) and its first Fourier har- - .
monic (dashed ling The domain radiusky=1.5\. Displacement . FIG. 6. '_I'he pha;ei; (solid ||_ne) and the amplltqde,‘\ (dashed
d=\. line) of the first Fourier harmonic of the feedback sighall; com-

puted as a function of the displacemehtor domains of different

. . . . radii: (a) Rg=0.5\, (b) Rg=\, (c) Rg=1.5\, (d) Ry=2.0n.
order to analyze the feedback signal in this regime, the case

of an arbitrary large displacemed R, should be exam- 1 (o2n

ined. In contrast to the case of a small displacement, an ana- A== [l(a)—l]de,
lytical consideration leads to rather complicated expressions. 2mJo

However, the arc length of an Archimedian spiral within a

circular domain can be easily determined numerically. A=+A7+B7,
To perform these computations we assume again that the
Archimedian spiral is motionless, while the domain center is p=arctariB, /A,),

displaced initially in the negative direction and then rotates

in accordance with Eq(10). For numerical procedure it is where

useful to present a spiral as a sequence of short segments.

Then, to estimate the arc length, it is enough to compute a 1 (2=

total length of all segments located inside the circular do- Al:ﬂfo [1(@) = lo]cog a)da,

main. As in the previous case it is assumed that the integral

B(t) will be proportional to the arc length(t) of the spiral 1 (2

inside the rotating domairB(t)/b=L(t)/S=I(t). Blz—f [I(a)—Ilg]si(a)da.
Obviously,I(t) is a periodic function of time, as well as 4mJo

the feedback signal shown in Fig(l3 and corresponding to . o
the resonance attractor. Variationsl ¢f) — I, during one pe- Itis clear that the coefficientsy,A, and¢ should depend on

riod are shown in Fig. 5 as a function of the rotation angle WO ParametersRy and d. Figure 6 shows the computed
Obviously, this function is not necessary a simple harmonidependencies op on d/x for four different values oRy.
one, as it was in the case of a small displacenddisee Eq.  1he valueA, remains always relatively small and does not
(15)]. Nevertheless, it has been shown that only the firsPl@y any importantrole in the induced drift. The amplitudle
component in the Fourier series of a weak periodic forcing/anishes fod=0 and for smalld linear dependencel®) is
can produce a detectable resonant défi]. Hence, in order Vvalid. Interestingly,A(d) is a nonmonotonous but bounded
to determine the drift velocity, one has to apply the Fourierfunction ofd with a global maximum inversely proportional

expansion to the feedback signal shown in Fig. 5. to Ry. The amplitudeA determines the absolute value of the
In order to be consistent with the previous considerationdrift velocity. _ _

let us expand the computed functidiit)—I, (here I Most important for the analysis below is the computed

=L,/9) in the following form: value of the phase shitb= ¢(d). For smalld, ¢ practically

does not depend od, but increases witliRy [cf. Eq. (16)].
For any givenRy, the phase shift grows witl, while the

l(t)=lo=Ao+Acogwt—¢) (26)  gerivative of this increasing function with respectdoscil-
lates.
and skip all other terms liké,cosfiwt+ ¢,)) with n>1. The As mentioned before, the phase shift in the feedback sig-
coefficients in this expansion are nal determines the direction of the induced resonant drift.
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domain radiusRy=1.5\. To plot this function, the depen-
dence¢(d) shown in Fig. 6c) was used. The dashed curve
in the lower left corner corresponds to=0. To obtain the
next two dashed curves the values=1 and m=2 have
been used.

Note that Eq.30) determines the attractor radius for the
case of a positive gaiks, in the feedback loop. A change of
the gain sign can be considered as an additional phase shift
equal torr. Hence, the attractor radius for a negative gain can
be expressed in the following way:

R,=d,
T ¢ ¢(d)
?—0.75—E—?+m. (31

FIG. 7. The radiu®, of the resonance attractor as a function of
the time delayr computed from Eq(30) for a positive gaifdashed
line) and from Eq.(31) for a negative gair(solid line. Computa-  In Fig. 7 three branches of this dependence corresponding to
tional data obtained after integration of the moti®lare shown as m=0,1,2 are shown by solid curves.
diamonds(asterisk} for the gaink,=0.1 (ks,=—0.1). The do- In order to explain why a circular pathway around the
main radiusRy=1.5\. domain center plays the role of an attractor of spiral waves,

one should consider the corresponding transient process us-

Indeed, using the expansi¢26) and Eq.(3), the expression jng similar arguments about the drift direction. For instance,
for the first harmonic in the feedback signal in the case, wheli computations illustrated in Fig.(8) the spiral wave is
a spiral core center is located at a distafefrom the do- initially located rather close to the domain center. The phase
main center, can be written as shift w7+ ¢(R.) is small in the generated feedback signal,

_ becauser=0 and®(R,) is negligible[see Fig. €&)]. Due to

H(t) =KipbA(Re)cof ot = 7= h(Ro)]. @D this, the drift initially occurs practically at the angle with

The total phase shift in the feedback signal is the sum respect to the radial direction. An increaseFeresm_Jlts ina
+#(R.). In the absence of this shift the spiral wave dis-9rowth of the phase shitb(R) that leads to a rotation of the
placed in the positivex direction will be forced by a signal drift direction to the left. WherR. becomes equal |, the -
I (t) =k;,bA(R,)cos@t). In accordance with our computa- radial component of_the drlft velocity vanishes and the §p|ral
tions, such a forcing will induce a drift specified by an angleCOre Starts to describe a circular pathway, corresponding to
¢ with respect to the axis, as shown in Fig. 1. In the case of the resonance attractor. If the distance toward the domain

an arbitrary displacemer®, the angley in Egs. (19) and center is suddenly increased due to some fluctuation, a nega-

(20) can be written as tive component of the radial drift appears, since the phase
shift ¢(R.) grows. This negative radial velocity begins to
y=¢p+ w7t d(R.). (28)  compensate for the initial fluctuation.

This kinematical consideration can be easily comple-

The necessary condition for the existence of a resonance ahented by a linear stability analysis of Ed49) and (28),
tractor is a drift in a direction orthogonal to the radial dis- which should take into account that(d) is an increasing
placement of a spiral wave. Only in the case, when the radigunction (see Fig. 6. Stable fixed points of this system cor-
component of the drift velocity is equal to zero, the spiralrespond toy=0.57+27m, which leads to Eq(29). Un-
wave core will describe a circular trajectory around the do-stable fixed points are given by= —0.57+27m and cor-
main center. In accordance with Eq$9) and(28), the nec-  respond to separatrices restricting basins of attraction of
essary condition for the existence of a resonance attractor @faple fixed points.
radiusR, is Thus, the existence and stability of the resonance attractor

obtain a transparent explanation analyzing of the phase shift

07+ $(R)=0.57—p+27m. @9 in the feedback signal.

This equation is very important, because it allows us to ex-

press the attractor radil, as a function of the time delay VIl. COMPARISON WITH COMPUTATIONAL RESULTS
using the parametric representation o )
It is important to compare the results of the theoretical

R,=d, analysis with computations performed with the reaction-
diffusion model(1). To this aim a number of computations

T ¢  @(d) have been performed using different values of the time delay

?ZO'ZS_ ﬂ_ﬁ"’m' (30 7 and different signs of the gaikg, in the feedback loop.

The computed radii of the corresponding resonance attractors
Figure 7 shows the functioR,=R,(7) determined for the are shown in Fig. 7 as separate diamonds and asterisks.
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stable orbits: the drift direction is opposite to the rotation
direction of a spiral. Decrease B during the drift induces
further decrease of first until y=— = (the azimuthal drift
vanishes at this instanand then untity= — 1.57 which cor-
responds to a stable orbit. For all attractors the induced ro-
tation of the spiral core coincides with the rotation direction
of a spiral wave.

The performed computations allow us also to verify the
theoretical predictions about the stability of the centrally
symmetric rotation of spiral waves. To this aim, taking into

_ _ ) ) account that in the modeb=—0.1, Eq.(22) can be written
FIG. 8. Trajectory of the spiral wave tip corresponding to the 55

resonance attractor computed for the model with the domain
radius Ry= 1.5\, the gaink;,=—0.1, and the time delay=36. 0.3+m<+/T<0.8+m. (32)
The initial location of the spiral wave tip is shown by the black dot.

(a) A'long trip the spiral wave corresponds to the resonance attra
tor under a strong influence of the domain boundary<t{O
<15000). (b) After a long trip along an unstable trajectory the
spiral core approaches a stable circular orbit=¢6=15 000).

“These inequalities determine intervals of tH& axis in Fig.
7 locating between dashdteft boundary and solid (right
boundary curves. Our computations indeed demonstrate the
existence of the centrally symmetric rotati@re., the reso-
The computed data agree very well with the theoreticanance attractor witlR,=0) in the predicted regions, except
predictions everywhere, except in the region of relativelyfor small deviations of the boundaries specified by inequali-
largeR,. A more detailed consideration of this effect showsties (32).
that the reason for this discrepancy is a boundary influence. The drift velocity is another important characteristic of
Figure 8a) shows a characteristic example of a resonancéhe resonance attractor. One can assume that for slow drift its
attractor of such a large radius. The performed theoretica¥elocity is proportional to the amplitude of the feedback sig-
consideration did not take into account that a real spiral wavéal. In all our computations the absolute value of the dain
has a core with radiuR,=0.092x. Hence, the attractor ra- in the feedback loop was the santlei,| =0.1. However, the
dius in reality cannot be larger thay—R,. Moreover, the ~amplitudeA of the generated feedback signal depends on the
spiral wave cannot survive near the boundary if the coralisplacementd from the domain center, as shown in Fig.
boundary is located directly at the boundary of the domain. 26(c). The small value of the amplitudeatd=0.6\ explains
gap with a width about the core radius should be there. Fithe extremely slow drift velocity for the attractor shown in
nally, due to the boundary effects the attractor radius canndtig. 2(b). In contrast to this, the drift velocity for the attrac-
be larger tharRy—2R,=1.42\. This estimate corresponds tor shown in Fig. ) is relatively fast, because the function
very nicely to the upper boundary of the computed attractoA(d) achieves a maximum nedr=0.3\.
radius. The predicted drift velocity does not depend on the gain
Note that the drift of a spiral wave in a vicinity of the sign and on the time delay. It depends on the absolute
domain boundary becomes extremely sensitive to any distuvalue of the gairky, and on the attractor radiug, . In ac-
bances. Only very accurate computations exhibit a longeordance with this, the drift velocity is also very small for
lasting drift. Any small deviations of the core position di- R;~0.6\ in the computations shown in Fig(8.
rected toward the domain boundary lead to the disappearance The domain radius is another important factor that influ-
of the spiral. ences the drift velocity. As mentioned before, the amplitude
In accordance with Fig. 7, it is possible to have severabf the first Fourier component is inversely proportionaRip
different resonance attractors for given parameters in thas it can be seen in Fig. 6. To compensate for this decreasing
feedback loop. What kind of attractors will be achieved de-of the drift velocity it is possible to increase the g&ip in
pends, of course, on the initial location of the spiral core.the feedback loop. However, there are many restrictions, for
Thus, there should be a separatrix bounding the basin dfistance, an enhancement of computational noise, which do
attraction. It is easy to see that the separatrices for the case 6t allow us to apply infinitely large gain. Thus, one can
a positive gairk;, obey Eq.(31) describing attractor radii for expect extremely slow drift iRy>N\.
a negative gain, and vice versa. Thus, the predicted direction and the absolute value of the
A spiral wave initially located exactly on this separatrix induced drift, the attractor radius and the regions of the cen-
can perform a long drift describing this unstable circulartrally symmetrical rotation are in very good agreement with
pathway, as shown in Fig.(8). However, finally the direc- computations performed on the reaction-diffusion model.
tion of the drift will be changed and it will achieve a stable

This complicated transient process can be simulated by
the system of Eqs(19), (20), and (28). Note that initially Our computations demonstrate the existence of the reso-

y~ — /2 since the spiral core is located near a separatrix. Imance attractors of spiral waves rotating in an excitable me-
accordance with Eq20), d¢/dt<0 and the drift occurs in dium under global feedback. The theory of the resonance
the clockwise direction. That is a common property of un-attractor in a circular domain developed in this work is based

016206-8



RESONANCE ATTRACTORS OF SPIRAL WAVES IN . .. PHYSICAL REVIEW &6, 016206 (2002

on the finding that the direction of the drift induced by the clear explanation. Also the experimental observations of the
global feedback can be specified as a function of the spiralesonance attractor under feedback derived from a confined
core location and does not depend on the initial orientatiorzircular domain 26,27 can be quantitatively explained.
of the spiral wave. This theory explains the phenomena of Spiral wave dynamics under global feedback constitutes a
stabilization and destabilization of the centrally symmetrichroad and prospective field for both theoretical and experi-
rotation of spiral waves for the domains of different sizes andnental studies. Only a very symmetrical case of a circular
predicts the existence of attractors with different radii. It al-gomain has been considered in this paper. It is clear that
|0WS us to explain the attractor Stablllty and giVeS quantita'sma” deviation from this Shape cannot Change the main
tive expressions of the attractor radius as a function of th‘i)roperties of the observed drift unless they do not change the
domain size and of the time delay in the feedback loop.  fijrst Fourier component of the feedback signal. However, an
The only quantity that should be measured in order tQessential variation of the domain geometty square or el-
apply these theoretical predictions is the angléhat speci-  |ipse) can induce some additional properties of the spiral
fies the direction of a resonant drifsee Fig. 1 Thus, the wave dynamics. Interesting challenges for future work can
obtained theoretical results can be easily checked experimeRe also the investigation of the influence of the global feed-
taIIy The |ight-SenSitiV€ BelOUSOV-ZhabOtinSky reaction iSback on a meandering Spira] or the transition to a |arge gain
probably the most convenient object for such experimentajh the feedback loop. Both of these aspects are very impor-
verification, although spiral waves are effectively studied intant for such applications as the defibrillation of cardiac
context of CO oxidation on platinum surfaf24] and exci-  muscle. From the theoretical point of view it is very interest-
tation waves in cardiac tissy&5s], too. ing to clarify a correspondence between the resonance attrac-
The obtained quantitative expressions are based on thgr under global and one-channel feedback. To this aim one

assumptions that a rigidly rotating spiral wave has an Archishould bring together two quite different theoretical ap-
median shape and the velocity of the induced drift is smallproaches.

These conditions are fulfilled for a spiral in media with a low

excitability independent of their physical nature. Hence, the

application field of the elaborated theory is very broad. For ACKNOWLEDGMENTS
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